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SUMMARY

An an_lytlcal model is developed for proprotor aircraft dynaalcs.

The rotor model includes coupled flap-la_ bending modes, and blade torsion

! degrees of freedom. The rotor aerodynamic model is generally valid for high

and low inflow, and for axial and nonaxlal flight. For the rotor support,

a cantilever wing is considered; incorporation of a more general support

with this rotor model will be a straight-forward matter.
t

INTRODUCTION

This report presenta the development of an analytical model for tilting

• proprotor aircraft dynamics. The emphasis in this model is on the rotor.

The rotor support for the present is limited %o a cantilever wing, but

the incorporation of a more general support model with %hie ro+_r model

will be a etraight-forward matter. ,:

_._e rotor notion is repremented bye ooupled flap and lag bemSin_

modeml rigid pitch (oontrol system flexibility) and blade elaetio ,,talon

deflection! gtabal tilt and rotor speed pertuzbLtion deEzeem of freedom

'I (optioaal). The mix oonponents of shaft linear and an_tar motion are i

,, lnoluded, and rotor blade pitoh oontrol. The rotor &mr,dynamic model M
ii i,

*Reeea.-eh 8olentis%, Large Scale Aerod_nIlm B/, HASA-Amee
• Resee='_ Center

4

1974023385-002



generally valid for high and low inflow, and for axial and nonaxlal flight.

The effects of compressibility and static stall may be included, but

reverse flow and unsteady wake aerodynamAc interference effects are

neglected. Three components of aerodynamic gust are included as external

excitation. The rotor model includes gimbal undersllng, torque offset,

precone, droop, sweep, and featherir_ ax_s offset (for the case with bla_e

bendlng flexibility inboard of the pitch bearing). Center of @fravlty,

aerodynamic center, and tension center offsets are included_ but the elastic

axis is assumed to be a straight llne, and only offset from the pitch

axis by the droop and sweep rotations. For the equations of motion in

the nonrotatln6 frame It is assumed the rotor has three or more blades.

The equations of motion are deriv_ for the rotor degrees of freedom,

along with the forces and moments acting on the hub. |
I

This rotor model may be coupled with any support model. The present l

derivation is restricted to a cantilever wing support (fig. i). The wln_. motion

is represented by three degrees of freedomt wing vertical bending, wlng

chordwlse bendln6, and wing torsion. Wing aerodynamic forces are included,

and a wing tzailing edge flap in the controls.

The differentia/ equations of motion for the proprotor and

support system are presented in matrix form, for three casess axial flow,

which is a constant coefficient system! normxial flow, which is properly

a periodic Coefficient systsm! and a constant coefficient approximation

for the nonaxtal flow equations, using the mean of the coefficients in the

nonrotating frame. The ax_l flow case is applicable %o the proprotor

aircraft in airplane mode cru_e and in helicopter mode hover flight.

The nonax_l flow case is applicable %o helicopter mode forward flight,

and to coaversion mode fl_ht of the proprotor aircraft.

Solutione and resulto for proprotor d_aaics from these equatione

are not presented in this report, but are left to a later work. v
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The body of this report is composed of the following

sections,

Bending/Torsion of Highly T_'istedBeam

•quations of _1otion for a Rotating Blade

Aerodynamics

:_otor Trim

Blade Bending and Torsion Modes

Support Equations of Motion, Cantilever _.ling

Equations of Notion

J

t

c
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BENDING/TORSION OF HIGHLY TWISTED BEAM

This section presents an engineering beam theory model for the

coupled flap/lag bending and torsion of a rotor blade, with large pitch

and twist. A high aspect ratio (el the ztructtcral elements) is assumed

so the beam model is applicable. The object is to relate the bending

moments at the section, and the torsion moment, to the blade deflection and

elastic torsion at that section. The analysis follows the work of

references I-3.

The basic assumptions are i) an elastic axis exists, and the

undeformed elastic axis is a straight line, and li) the blade has a

high aspect ratio (of the structural elements), so er_ineering beam

theory applies. Figure 2 shows the geometry of the undeformed blade.

The span valable is r, measured from the center of rotation along the

straight elastic axis. The section coordinates are x and z, the principle

axes of the section, with origin at the elastic axis. So by definition

Really the integral is over the tension carring elements, i.e. modulus
a

weighted, SxzE dA - O! so x and z are modulus principle axes.

This remark holds for all the section integrals in this section. The

tension center (modulus weighted centroid) is x C aft of the elastic

axis, and on the x axis, i.e.

o
A@aln, these are modulus welghted integrals. If E is uniform over the

section, then xc is the area centroid8 and if the section mass distribution

is the same as the E distribution, then x c equals the section center of

_avity location. ,,

The angle of the major principle axis (_w x axis) with respect J

to the hub plane Is _ . The existence of _he elastic axis means thLt

elastic twist about the EA occurs without bendix! _e may, and shall, include

the elastic torsion deflection in _ . The blade fea_wrl_ axis (FA) is at

1974028885 005



rFA| the blade pitch is described by root pitch _o (rigid pitch about

the FA, including that due to elastic distortion of the control system),

built in twist _ , and elastic torsion about the EA _ ,

_a(_h = root pitchl command collective and

cyclic and control system flexibilityl
rigid pitch about the FAt equals _ at

+ rFA
a_(c_ = built in twist, _ (t_,__ _ D

_(_ = elastic torsion, @_(_A_ a=o

+

There is stress in the blade due to _ only. It is assumed that _ is

small, but _e and @v_ are allowed to be large.

i The unit vectors in the hub plane (HP) axis system (rotating)

! are t-@ j .)& . The unit vectors for the principle axes of the

+ section (x,r,z) are _ | these are for no bendlng, but Includlng

! • the elastic torsion in the pitch angle _ . So the principle unit

i vectors are rotated by _ from the HP,

• _ --_._ - _ _

Description o.f the bendinA

No_ the engineering beam theory assumption is introduced, ill) plane

sections perpendicular to the EA remain so after the bending of the blade.

Figure 3 sho_s the geometry of the deformed _ect_on. The deformation of

the blade is described by

i) deflection of the BAs x_, r o, z o

ll) rotation of the aection_ _m,

tit) t_iat about the EA, implicit in _ ,_.

_ _=n_ xo, ro, %,_, _e ' _ _ mum_ _ _ mla.
:

Q ,"

5t

%

J II I J
I,

L. IIII II i i - *, '
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The unit vectors of the unbent cross section are _)_ . The

unit vectors in the deformed cross sectton are _,$_Is_s : _i$ _

are the priciple axes of the section, and _ is tangent to the deformed
FA. It follows then that

and s = arc length along the deformed FA. Hence to first order

It follows the rotation of the section is

v

The undeflected position of the blade element is

and the deflected position

We shall ne$1ect r o for now. _ sb_ a_lysis is 8iaplified then since

to f_t order 8 - rl ro _us$ gives unifora stm, in over the section, 80 it

say be siaply added back later.

-6-
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Analysis of strain

The metric of the unde1"or:;ledb]a,_,e-- no bending, and no torsion

so _=_-- is

The metric of the deformed blade, with bending and torsion, Is

bc

_r &c

Then _e-axlal component of the stain tensor_

j
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The strnin due to the bl_.de tennlon, _- , is a constant such

that the ten_ion is given by

251L4._e_.

Substltuting for Er_ and ,_Ing _z dA - O, _x dA = XcA , and

_,herekp is the (mod.lus _ ;ehted) r_.diu'_ef gyration about the FA, obtain

for _T :

"I" v ¢IL • e

J/A _. c

In this expression, the strain clue%o the blade extension r has been anded.
o

It follows the :train may be written, i_ lh C_- = T/EA l

el_ 4 •

Section moments

To find the moments on the section, the second engineertn6 beam

theory assumption is introduced, iv) all stresses except _-_- are

negl_:.ble. The axial stress Js given by _-,_ = E_c-r- • The direction

of_, _ ;, _--_/1<_I
The _o_ent on the _eforaed cro_s section (figure _) is

.. _ = _,e,<,,+ _,:_,, + I,,,,_,<,,
To find M, in_'ate the moaent about the _A due to the elemental force

_er _)_ on the cro_s section,

Integrating over the blade seet, lon, there follows the total momento due

%o bemding and ela_tio kmionl
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_v

f,

To _", has been a_ded the _r_ion moment C_J_ , 4ue to snear stressesr

produced b)" elast__c %orston, There momenL_ are about the E_., For ben_n_

it Is more convenient to work with nonrmL_ about thu tension center x_:

Substituting for _r_rr and inte_ratlng, the moments are!

where

kz •
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The Integrals are all over the tension carryin_ elemen_ of course, i.e.

modulus weighted. _A'hetension T ac_ at the tension center Xc; hence the

bendin6 moments about the EA are c_ven '_'om those about xC by

The bendir_/torsion couplin_ is due to EIxp and EIZp; for a symmetrical

section EIzp = 0.

Vector formulation

Define the bend in4_moment vector

and the flap/la_ deflection _ ----C qo_ ---o _ J

( M E %s not quite the moment on the section, because Mx and Mz are

re_lly the _._ and _,_ component_ of the moment). The derivatives
-b

of w a_e

Then the result foz the bendln_ and torsion moments may be written,

%l_LsIs the result so.hi in this se¢._toa.

-10-
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Writing the El dyadic as _: ---E_._'_+ £X-aL_ and the

coupling as E_=p = £X_e_--i_=_ , this result becomes

_is form is an obviou_ extension of the en_ineerin g beam theory result

for uncoupled bendinE and torsion ( _ = 0 case). The ve:tor formulation

of the result is a major simplification. The vector form allows an easy

transformation from one axis system to another. In fact, the vector form

is independent of the axis system used (the base of the vectors), which

is the source of the simplification. Norki_ with the vector forn simplifies

the analysis to follow! the base of the vectors (for exanple, either the

hub plane system, _I _,_ , or the principle axis system, • A _ )

will be consldere4 only when come to evaluate the coefficients of the

equations of motion, never in the derivation.

This is a llneazized result. So the _k appearing in EI
_a

and in w are based on the trim pitch an_le 8aOe_O_. The perturbation

of _ due to Ot gives secon_ order moments, which have already

been neslected in the derivation. The net torsion modulus is

where_-_"5;_--a_ -oe.=if_l_,io.in_.blue_o,
the elastic torsion stiff_ss characteristic of rotor blades, the CJ tera

usually doainates. The k_ T term is only important for very soft (torsionally)
blades, MIz the root. The _ E_=_ tera im only important for very

soft, high twist blades.

t " -ll-
t

!
1
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_J.W..TiC_'SbF :;OTI_N _""_A _O'I'&TINGBI,.IDE

Phir section derives the 4.-ti,ms c_ ....t':_ for a helicopter

x_tor blade. .he blade -:otion consldcred In( L • "o,u_]e4 f'Inp/la_,

bending (Inclu_In_ the rigid modes if the blade is articulated),

rigid pitch, e]astlc torsion, gimbal pitch and roll, and rotation speed

perturbation. The analysis includes the effects of precone, droop, and

sweep; featherinG axis offset! and £que offset and glrlbalunderslln_.

The effects of shaft motion, and the hub forces and moments are included,

so this analysis may be oomblned with the equations of motion for a body

or support to _Ive the complete aeroelastlc model forthe system,

Numerous approximations are made in the course of the analysis, in order

to obtain a tr%ctable set of equations.

Ro%or Co nfIguration

Consider an N-bladed rotor, rotating at speed ,_ (figure 9).

ruthrotor blade is at

where A tp = 2_-/N and W. _.I_ is a mondimension_l time variable.

The S system (_,j-_, _S ) is a nonrotating, hub plane coordinate

system! is a

coordtnste fraae rotating with the ath blade. The acceleration, an&_lar

velocity, and an&n_lar acceleration of the hub, and the forces and soaents

exerted by the rotor on the hub are defined in the nonrotating _P frame --

the S system. The rotvr blade equations of motion are derived in the

rotating frame -- the B system. Figure 6(a) shows the definition of the

rotor shaft aotlon, linear and an_ displacement in an inertial frsae.

Figure 6(b) shows the definition of forces and moments on the hub, in

aonrotattng fraae.

Bl_ade root geome__

Figure '/ shows the blade root geometry considered (_%te-ttd).

The origin of the B system is the location of the giabsll if there is no

_bsl, this ls Just the point where the shaft motion and hub forces are

-12-
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I
defined. _z_egimbal is at the center cf the B and S frames. The hub I

°f the r°tor is ZFA bel°w the gimbal (glmbal undersling)' Thet°zque.._ 11
offset XFA is positive in the -_4J direction. The azimuth _ is

measured to the feathering axis line (its projection in the HP), so the

FA iz parallel to the _ axis, and offset XFA from the center of

rotation. The precone angle _5_A, gives the orientation of the FA with

respect to the l.ubplane; _, is positive upward, and is assumed to

be a small angle. The FA is offset from the center of rotation by rFA; i

the FA is located at r = rFA along the blade, rh_ rio_id pitch rotation

of +he blade about the feathering axis occurs at rFA. The droop angle

_V_ a and sweep angle _a_ occur at rFA , just outboard of the

feather bearing! _% and _A 3 give the orientation of the EA of

the blade with respect to the FA. Note that these angles are measured

in the HP frame; _A Z is positive downward, and _ is positive

aft. Both :_pAt and _ca 2 are assu_ed to be small angles.

From the glmbal to the blade root is the hub, underslung by ZFA

and torque offset by XFA. From the root to the VA is a shank of length

rFA, which undistorted is . straight line an an angle _A! to the hub

plane (small precone). The blade outboard of the FA at rFA, undistorted,

is a straight elastic axis, with small droop and s:_eep ( _pa2 and _A3 )

with:respect to the FA direction.

From the glmbal to the root is a rigid hub. The shank (inboard

of the FA at rFA ) and the blade (outboard of rFA ) are flexible in bending, i
I=

The shank is assumed to be rigid in torsion, i.e. the effect of torsion of [

the hub inboard of the feathering axis is neglected. The ,lade outboard 1,_
!

of the FA is flexible in torsion as well as bending. There is rigid pitch

rotation of the blade about the FA, which takes place at rFA, about the local

direction of the FA at rFA, includiJ1g the bending of _he shank. Inclusion

of the bending flexibility of the blade inboard of the feathering axis

means the the general rotor configuration is consideredl the articulated

rotor with the FA inboard or outboard of the hinges, or the cantilever blade

with or without flexibility inboard of the FA. The special came of a rigid

._h._nkcan be considered as well of course,

i -13-
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Geometry of the blade

Figure 8 shows the undeformed geometry of the blade. It is "%s_L_e_

that i) an elastic axis exists, and the undeformed EA is a straight line;

and ii) the blade has a high aspect ratio, a(_ engineering beam theory and

lifting line thcory are applicable. The following notation is use(l:

J"A feathering axis

EA elastic axis

CG xI locus of section center of gravity

AC xA locus of section aerodynamic center

TC xC locus of section tension center

Thc distances YI' XA' and xC are positive aft, meazurPd fron the EA; they

are in general a function of r. The corresponding z dlsplace_ents are

neglected, i.e. taken as zero,

The q.,_.j_-o systen is the EA/principle axis system of the section. L

The subscript "o" is for the undeformed frame, i.e. no elastic torsion in 1

i, or glmbal or rotor speed degrees of freedom. The subscript will

be dropped when it is obvious what is meant. The direction of the undefcr_,,ed

EA is _ _ I_o_ are the directions of the local principle axes of!

the section, undeformed (no bending or torsion).

The span variable is r, neasured from the center of rotation to

the tip. This variable is dimensionless, r = 0 at the root to r = i at

the tip. The section coordlm_tes x and z are mass principle axes, with

origin at the EA. It is assumed that the direction of the mass principle axes

lethe same as the modulus principle axes (used in engineering beam theory

for the structural moments). The CC is at z = O, x = xI. Usually xI and

x C should be close. By definition then

_ = _ section massB

o
q* _ = _z -- OG location.J

and

# _ el* tt N ,L _._ section polar moment

i of inertla, about EA •

t
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The bl_e pitch an61e is _ ; here undistorted, denoted by the

subscript "m". The anc_le _) is measured from the HP to the sectien

principl+xis.-- It is then the angle of rotation of _ from the
!

HP axes.--The undeformed pitch angle is the collective plus the built

in twist

where _),.,, = collective pitch

_c_ = twist

Define 0_i_ as the pitch at rFA, so _(e_ --O. The root pitch is

then _° = _ . Inboard of rFA, do not have the e_& rotation of

the blade, but there can be pitch of the local prinlcple axes with respect

to the H_, which is included in _ for r -e rFA. Note e_ (r_ is

not necessarily zero, hence there is a jump in E) at rFA of magn_'_de %

The trim pitch angle is then

It is assumed that E)_ is steady, constant in time, so independent

of _ • Cyclic variations in _ , as may be required to trim the rotor,

are included in the perturbation to the pitch angle. We shall allow

the trim pitch angle to be large, hence _%1 and _ may be larg_

angles.

The physical sweep and droop an_les are defined with respect to

the blade outboard of the FA, i.e. rotated by _= about the FA. Let

_ and _ be d_ with respect to the principle axes at the

root (at the FA, r - rFA)! these angle_ will be equivalent to _A_ and

_ when there is zero root pitch. Hence the _A_p and sweep angles are

-15-
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The angles _L and _A$ are fixed 6eometrical constants. It follows

then that 6fAr and _A$ vary with the root pitch _o . This must

be accounted £or when there are perturbations to _ due to the rigid

pitch motion of the blade. In addition, the droop and sweep only affect

the blade outboard of the FA, i.e. for r_ rFA. This may be accounte4 for

by including with _ and _Aj the factor U(r-rFA), where

I ¢'_,o

_e shall follow the convention of assuming the factor U is present whenever

writing _GA L or _¢A3 •

From the B system (ruthblade, rotating DLPaxes) to the o system

(undistorted EA/XS axes) there is

i) rotation_,-_A_aboutz% (smallpreconeanddroop)
__L

2) rotation _A_ about ka (small sweep)

3) then rotation a, about _A (large pitch angle)

Hence i

.here _4_ and _ are based on e_ = e_eu , and are aboent for

r _*rFA. We shall drop the subscripts "o" and 9m", denoting the trim and

undistorted geometry, when it is obvious what is meant.

-16-
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Motion

The rotor blade motion (degrees of freedom of the rotor) is

described by,

I) gimbal motion (optional)! pitch and roll of the

rotor disk.

2) rotor speed perturbation. !

3) Then elastic torsion about the EA, and rigid pitch

about the FA.

4) Followed by bendln_ de£1ectlon o£ the FA, including

rigid flap and lag motion if the blade is articulated.

Ciabal motlcn/rotor speed perturbatlon

Figure O(a) shows the glmbal motion and rotor speed perturbation

in the nonrotatin_ frame. The giabal degrees of freedom are _c and _s '

rotation of the rotor disk, in the nonrotating frame (S system), with the

same convention as _,g and _,$ tip path plane tilt. The rotor rotational

speed perturbation is _ . The degree of freedom _z is a rotation

about the shaft axis _S ! so the azlmuth angle of the ruthblade Is really

Figure 9(b) shows the gtmbal motion in the rotating frame.

Th_ legrees of freedom are _ and O_ , given by

The aaln effects are due to _@ , the fla_lee rotation about the _6 axls;

, the rotation about _i , only introduces a translation of the

hub du_ to SFA and x_A. The blade pitch _ is defined with respect to

+he hub plane, so only the blade inboard o£ the PA sees the pitch rotation

due to 0 0 , and that effect will be neglected,

Blade aot, ion

Figure 3 shows the geometry of the deformed blade. The blade

de£c_ation is described bys

i

-l?-

t

| /

..._ J
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1

1) twist about the EA:

?) deflecticz:of the EA: Xo, z°

3) _otation of the section: #y )_

_he pitch argle _) , including perturbations, is implicit in

the -2)_}_ systeml _$_ are the principle axes of the blade

with no bending, but now with the blade elastic torsion and rigid pitch

motion in _ . The XS system (_)_.&)_ ) are the principle

axes and EA of the deformed blade, including torsion and bending. The

tangent to the deforme4 EA is _i ; the rotation of the cross section

from I_ _ is given by +_ and _ :

= c_.___o_°

The blade position, relative the root, is then:

= c,.,.,-._ -_ + _._ + ,A + ",;C,,,+ :_t_,

We will neglect the perturbatlonof theradlal position, e, %_4v-.

Blade pitch

The ankle _) is the angle of the major principle axis of the

section (the x axis, c_ordwise),measured from the hub plane. The blade

pitch is composed of_

_) e_(_ = root pitch, the pitch of the blade at the FA

at r = r_A! due to commarMed collective and control,
control system flexibility,and mechanical feedback.

3) @z(e,_ = elastic torsion about the F-..AIzero at the FA,
_ka)_- O! only _ produces torsion shear
stress in the blade.

-18-
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For the shank, r-CrFA, elastic torsion is neglected, and it does not

see the root pitch _" . Then _r_(_ is used for the pitch of the principle

axes with respect to the hub plane in the shank. There is no perturbation

to E) inboard of the FA, the pitch and torsion degrees of freedom are

only for outboard of the FA. Since probably e_(r_ is not zero, there

is a jump in {9 at the FA. So the blade pitch is

The commanded root pitch angle is

e e -- _,ll _ et_

where

_u = collective pitch angle! the trim value, which

may be laxge but is assumed to be steady in time.

e_ = control input; time dependent, but assumed to be
a small an_lel includes cyclic to trim the rotor|

and for dynamics analyses this is the control
variable.

__leblade root pitch commanded by the control system is _& ; _" is

the actual blade root pitch. The difference 6_ °- e_ is the rigid

pitch motion due to control system flexibility or mechanical couplin_ in

the control system (i.e. _3 effects). Hence we may write the blame

pitch as 8

i (e,._, �e.,,..'_+ _e°-e ".') _ e,.,,,. . e,. r>rp_

8
e"

-- e_--. �ce'-e'_+ _ c=rp:

Now the pitch 6 may be separated into trim and perturbation

contributions •

" • /I,,' • ,4, .
E)== &),,. "_" t) e=r-_

e. r< _k

1974023385-020



where the trim terms are (_s above)

and the pert_bn tlon_

I C_g°--e "-') .+_,.0

The trim value of the pitch is _ , composed of _),.411 and _..a I

it is a large, steady angle, The perturbation of the pitch angle

is _ , composed of the blade motion 6_ e-@L_ , O_ . and Oe_ ;

all are small angles, so _ is small. For the rigid pltch degree of

freedom we shall use Po' defined as
_O

_ = e = ¢e °-_=_ _¢.=,_.

and for the elastic pitch _ an expansion as a series in the normal

modes (described in the sections to follow). Note that Po is the total

rlgld pitch perturbation, including the control _.

-20-
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Coordinate Frames and Axes

S System, nor[rotating, hub plane frame

rotation _.-_o about _S _,

B system: rotating, ruthblade, hub plane _,_
C. abe ,t _Q

• about
H syztem: hub frame _-h_4

_A, about "_ "6_%

FA system: blade £A (EA for r _-rFA ) P"_t

--S_A$ about ¥-_A __

EA system: EA outboard of D_A

--@@ about _aA _
blade system: principle axes, including torsion

@a about

_, about _ _%
XS system, principle axes, torsion and bending

B system

k,

Blade system

From the B system to the blade system, there is first rotation

rotation _ about _Ik . Hence,

-21-
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For r < rFA, the _% and _J_ terms drop; in particular:

XS system

Undisturbed blade ,_,ys%em

The undisturbed blade system is "@)'_,_ without _, I_, ,

or the pitch perturbations In _ (and I_az _ _j based on 0_" = _)_,_ );

hence #

"_o= ,,,-o. _,_ _-_ e. "_, + -_ [.._s_, - _,_,'_-,,.e. - z_,__ _)-'3

[

Mow since the blade motion _ , _ , and _ is s_a11, it is possible

to exp_nd the blade system in ter_s of the undisturbed f_mem

There follows %hen,

-?2-
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C_o-_._o"_ -- _,,o-_o �_,o',-,_

which i_ %n ex_i]sion of the bending/torsion deflection of the blade

in terms of the undlsturbed axis system.

Blade position, velocity, and acceleration

Position

The distance from the glmbal %o a point on the blade section is

9

h.. "N_
,,?

which may be written

 �|�+C,,.._-',-_o_) . (,9,+:m'_.3

.}

k
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VelocitZ

The velocity of a point on the blade, relative to the rotatinc,

frame (the B system) isz

where

Acceleration i

_e acceleration of a point on the blade, relative to the rotating !
frame, and neglecting the squares of velocities, Iss

where

Accelerationof the blade

The acceleration of the blade is required with respect to an i

inertia frame, i.e. in the S eyatem. The B 8Fa+.ea rotate8 at a constant I

|

a_ velocity _0 _4 with respect to the S frame. The shaft !

motion is composed of linear and angular velocity and acceleration of

• I
-2"-

|
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the origin or the S frame ithe Ei_nh'11I_nt at the hub center of rotation).

The acceleration, an_.ular velocity, and an6ular acceleratlun of the _

system, with respect to the nonroL%t_n6, %nertlal frame, are:

._ -_ /.%
tJ° and t_e are all small quantities,It is assumed that ao,

Given above is the motion of the blade in the B frame, the accelez_tion

and velocity of the blade a and v'_. Now we shall derive the acceleration
r r

of a blade point in inertial spac. ( a-_), in terms of the motion of the shaft,

the rotation of the rotor, and the blade motion in the B frame. From the

result for the acceleration in a rotatln_ coordinate frame, there follows,

..% .., ._ ..3 -3 ..* 2__ -_

..% ._
where a and v are the acceleration and velocity of a point in the

r_8 rps

S frame. _e B system rotates at angular velocity _ = _7._ with

respec_ to the S frame. Hence .ith _ constant aa_ no angular acceleration

or acceleration of B with respect to S. there follows,

Oe)$ a_

.3ar _ are the acceleration and velocity In the B frame. Thus,
wh@re

To fiz_t oz,der in the veloclty and angular velocity, tlxi8becomes,

-25-
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The six terms are res_ctively: the acceleratior,of the u_'gln; the relative

acceleration in the rotating frame: the relatlv¢ corlolis acceleration:

the centrlfu_l acceleration: the corlol£s acceleration due to the an_ular

velocity of the origin; and the an_nAlaracceleration of the origin. In

dyadic operator form, and,wlth _ m _ _B , this result is

To obtain the forces and moments and equations of notion, the

acceleration is nultiplled by the density of the blade point ( dndr ) and

integrated over the volu_e of the blade, to pro_.ucethe total acceleration

of the blade.

Equations of Motion and Force_

The equations of motion for elastic bending, torsion, an_ ri_;4 pitch
of the blade are obtained from equilibri_ of inertial, aerodynamic, and

elastic moments on the portion of the blade outboard of r_

- _ + MA - MI

where _ - s_Jmctural moment on deformed cross section, on the
inboard faces so - is the external force on the
outboard face.

MA - _o_1 aerodyrstJ_io force un blade suxTace outboard of r.

MI - total acceleration of the blade outboard of r.

is a general elastic eonetrsint0 from engineering beaa theory for

berdlr_ and tox_lonl i_ control system flexibL_lty for rigid pitch!

hub spring for giabal motlonl or it Is the force or moment on the hub

due to the rotor (so - _ Im the foree on the rotor). MIil the angular

&ceeleration of the blade outboard of r, about the point _o(r),

• I
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_or bending, er_ineering beam theory gives

--% __%

So this operator is applied to MI and MA also. For bending the moments

about the teflon center xC are required. Then the desired PDE for ben_[ng_

is obtained from _

For elastic torsion, engineeri1_ beam theory gives _c£: _,s "_E •
..-% __%

So this same operator is applied to MI and HA. For torsion require moments

about the section EA (x = O) at r; also, elastic torsion involves only

r _ rFA. The desired PDE for torsion is then obtained from _f _¢- .

The equation of motion for rlgld pitch degree of freedom Po = _e

is obtained from equilibrium of moments about the FAx

where M is the moment about the FA (x : O) at r - rFA. The elastic restraint

from the control system flexibility gives the restorlng moment ahout the

FA, completing the desired equation of mo%_. _.

The equations of motion for the glmbal degrees of freedom _eL and _s

are obtained from equilibrium of moments about the glmbal:

:

where M is the total moments (from all N blades) about the glmbal

point, in the nonrotatlx_ frame.

The equatLon of motion for the speed perturbation degree of

freedom _ is obtained from equilibrium of torque moments ,._:-/_j :, I_-_

where again M is the total moment about the glmbal point.

The total rotor force and moment on the hub (at the gimbal point)

are obtained from a s_m Over the N blades of F C'_ and M , the force

and momentdue to the ruthblade,
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._% _ ..2 (.._

V_A|

Since - F and - H are the forces on the b!_de, there follows from

force and moment equilibrium of the entire blades

The hub force and moment are required in the nonrotatln_ hub plane frame

(the S systen); the components are defined as,

Note M produces the glmbal and rotor speed pert_rb_tion motion, if those

degrees of freedom are _sed, but it is also transmitted throu_ht the Eimbal

to the tw_l ;c@pter body or support.

Aerodynamics

The aerodynamic forces and moments on the blade are obtained

from the inte_-al over the span of the aerodynamic forces and pitch moments

on the blade section. The aerodynamic forces and moment on the section

are!

inhub plane, positive in drag direction,

Fx (Z_ direction), at the EA

F normal to the hub plane, positive up (t A
z direction), at ",,he FA

radial, positive outward (_a direction),
Fr at _e F£

Ma moment about the EA, positive nose up

i

The forces on the section are F x, Fz, and Fr ! these are the component

of the aerodynamic lift and dra_ forces in the hub plane axis system

(the B frame). Fr is here Just the ra_ial dr_ force! the radial components

-28-
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of F a.d F due to tilt of the blade when it is bent are included
x z

exiAicitly in the results below,

The aerodynamic force on the section, at the deformed EA, including

the effect of the rotation of the section due to bending, is thus:

and the aerodynamic moment8

,..... ,_ ,.. , " • • 1974023385-0_



Equations of Mot_ion _nd Hub Forces/Moments

_end_a_
The equation of motion comes from

where _,I_s the moment about the tension center (x = x_) at r, and
,j

_nertia: Con_i6erin_ first r_rFA, the moment is

l

So

-30-
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So

,

We shall neglect the last term in this result, [(_+_._-" 7" _ 0

as order (c/R)2 smaller than the first term. Including the case r _rF%,

which only introduces an effect of droop and sweep, the result is.

!

where g_e_ is the delt_ function, i.e. an impulse at rgQ.

_) ehaft motion, with _el_& have

S_

-31-
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b) relative acceleration,

--- _ --_ (-_A_ "'___ _

am

c) een_ifu_l aeeeleratlon.
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a) corlonsaccel,ratlon, _ ---?_'__

For _-_'_r, it Ls here necessary to include the effect of the chan_e

£n t_azli,_l posltion of the blmle due to bendlng, 1
_,_: __, .1__)_ [ c'o'C'_:L_'='_')'- (_'S-'S'_'_g 2.

-?3-
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elastic :

D 9 _r _irlr

aerodyna_ic: The moment about the tension center (x = Xc) at r due to

the blade loading at the EA at _ :

..3

elastic torsion

The equation of motion is obt_Ine_ from

8r _C

where _ l_ the moment about the _ a_ r, and

_C

inertia,
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_ c_+_._ +• S(_ -_-_-_ _-

_,°_+,._+_ I_,--,_-,.+___
The O!_ for the kth torsion nocleof the ruthblade is obtained by oner_tin_

with Slc_A _(,.,_&_ _ where ]K is the el,_ctictorsion node
sh_pe. It is most convenient to apply this ope_tor at this point:

cpA _r
I

-S,-,,_,,,_:_-c-'xVc"-9_.e._,-.

t ol
an_ we shall use the notation,

a) shaft motion,

I ,,,,,,s

I ,..a _o+ C.5,..2,,- ".+5<'_.e'-f'e'''>""

P _ ,, " L.
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b) relative accelerate=n,

where _@ = _ _2+_z _ ___ section pitch moment of inertia, about EA.

c) centrifugal acceleration, neglecting a number of terms due tc blade

torsion and pitch (of the sane order _s the
propeller noment), compared to the structural

stlffenlu_; there follows :

%

%

Cj

!
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q_. v

_C

aerody_ntes the noment a_ut the _ _t r l_

_hus

-:37-
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Rigid pitch

- , where
The equation of motion comes from HFAE _ r_FAI _A A

.S ._3

an_1M i_ the moment about the FA, ,_t r = rFA.

inertia z

' ' 1

and we shall use t.._enotatlon_

..%

a) shaft so,loaf

, _._ _-"--_ _
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b) relative acceleration:

I --)

I --/ o

c) cen%rlfu_l acceleration:

-_:)-

J
%

k,

] 97402:3385-040



&erody_-_Ics: moment about the FA at rFA is

-he+e o-'-'/',,-

elastic:

The aerodyrL_lc and intertial moments about the Fh are reacted

by noments due to the deformation of the control system, due to commanded

pitch an_,le, and due to feedback (mechanical or kinematic) from the blade

bending or glmbal motion, me restoring moment about the feathering axis

on the blade is --Moon; tt Is given by the control system flexlb_Itty, i.e.

the elastic deformatlon in the contr_l system _L_ tines the control

system stiffness Kco n. Hence,

_,,... = W,....D,,.. - _+..o..(_'-e,.,., + E w,,,,,,X;-', _'P+.,,('+e..')

The qi are the bending de_rees of freedom, so Kp are the pitch/flap and

pitch/lag coupling, mechanical or kinematic feedback due to the control

system and blade root geometry. S_tYarly, Kp is the pitch/flap coupling

for the gtabal motion. Por the rigid flap motion of the bla_e, this {

couplln_ is given by the _j an_le, such that Kp " tar,_ 3 • For a i{"

rigid control systea, Kco n --_ Do , the rigid pitch equaticn of motion

reduces to _e

So Po becomes Just the control _put, a_t ptt_:h/bendin 6 coupl_.ng.

i -_o-

!
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Now we write the control system stiffness K in terms of thecon

nonrotating natural frequency of the rigid pitc_ motion of the blade, We

| 2

Then:

Force

The net force of the ruthblade on the hub is

where F is the force due to the blade, at the hub,

a) shaft motion:

�<S'o_._b(_,e,4,%>eo
b) relative accelez_tion_

c) coriois acceleration,

__a

-_.1-
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_) centrifugal acceleration:

,in,

aerodynamics:

Moment

The net moment of the ruthblade on the hub, about the gimbal point,

isI

_- _A--_

inertia= _I _ o

a) shaft motLon,

I,,_o

i

-42-
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b) relative acceleration.

+ ._°(_o_- _o_.y",.. ,_-

m

c) centrifugalaccelerationz

t . i
I "
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d) corlol _s accelerat ton:

ov-c_

+ (_X- .o_.-,,,_.9.")

aerodynam£cr :



Cimbal

The equations of motion for the glmbal degrees of freedom are

obtained from the "_ _ -_s componen_ of _ = _ _l-_ ; thus:

_'HS+ MI = t_A

_:hereM}_ is the spring an_ damper moment at the gimbal, reacting the

rotor a_pliee, noment. The gimbal spring and damper are assumed to be

in the nonrotatlng frame. Hence:

Taking the _$ and _$ components of _', the gimbal equations o£ motion

are:

We shall write the glmb_l hub spring and damper as:

where _._ = _: l'_--_k_ and _ i_, th," natural frequency of the gimbal ,

flap motion.

1974023385-046



I

_iodalEq_lations

Bending

3onsider the equilibrium of the elastic, Inertlal, _n,_ eent_%f_gal

bending moments. _rom the above analy_ir, these terms give the

homogeneous en1_%tion for bendin_ of the blade:

__/1

+_ r._:oe+-Xo'P-.>'"= o

'l_Isequation nay be solved by the method of se?aration of variable._.

it becomes

c_-,-<"_"- _.• [S)_-gC]'-_-_n--)'_ =°
This is the modal equation for cour__,_ClaD/lag bendin_7,of the rotati_

an ordinary dlfferential equation for the mo_e shape _C_') :
blade. It is

this mode may be interpreted as the free vibration of the rotatlng_ beam

at natural frequency _ .

This no'_n.lequation, with the appropriate boundary con::_tiom_

for a cantilever or hinged blade, is a proper Sturm-Liouville elgenvalue

problem. It follows that there exists a series of elgensolutlons _%_(c-_

of this equation, with corresponding eigenvalues _ . The elgensolutions

-- modes -- are orthogonal with welghtlng function m; so if i _ k,

5o "t' " _.'-, I_' = o

These modes form a complete series, so it is possible to expan_ the rotor

blade bending as a series in the modes,

5-I
.e

i
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We shall normalize the bending modes to unit amplitude (nondimensional)

at the tipz _(i_ = I.

Torsion

Consider the homogeneous equation for the elastic torsion motion

of the nonrotating blade; i.e. the balance of structural and inertial

torsion moments, which from the above analysis is s

We could consider the equation for the torsion motion of the rotating

blade, i,e. including centrifugal forces and some aAditlonal structural

torsion moments. For the usual torsion stiffness of rotor blades these

terms have little effect however, and the nonro_ting torsion modes are

an accurate representation of the blade motion. Solving this equation

by separation of variables, write _m_(e)_ _I_,-- so:

-c_ }'_ "- =_*} ,,o

This equation is a proper Sturm-Liouville elgenvalue problem,

so it follows that there exists a series of elgensolutions _(c-_ , and

corresponding eigenvalues _ (k = I... _ ). The modes are orthogonal

with weighting function I_ , so if i_ k

The modes for_ a complete set, so the elas#,ic torBion of the blade may

be exl_nded as & series in the modes l

These modes are the free vibration shape of the nonrotatlng blade in

torsion, at natural frequency _ . We shall normalize the torsion modes

to u._.tyatthe tip, h(O" 1
J--

' k
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Expansion in modes

The _,ending and torsion motion _i" the blade is now expanded as

series in the natural modes. By this means the !_%rtial differential

equations for the motion (in r and t) are convertcd to ordinary differential

equations (in t) for %he degree._,of freedom.

For the bla@e bending _e write

__t

where _ % are the rotating, coupled bending modes defined above. These

modes are orthogonal, and satisfy the modal equation given above. The

ql are the degrees of freedom for hhe bending motion of the blade. It is

assumed (for the inertial terms) that the trim bending deflection is

steady, independent of tlmel and when the substitution for the modal

expansion is made, the subscript "trim" will be dropped, as that is all

that will be meant by (_-II@_B then.

For the blade elastic torsion we write

_ are the nonrotating elastic torsion modes. These modes arewhere

and satisfy the modal equation given above. The Pi (i_ I)or+J_ogo n_l,

are the degrees of freedom for the elastic torsion motion of the blade.

We also have the rigid pitch degree of freedom

@o= = ¢e°- 3

which is the total rigid pitch motion of the blade. Since it is rigld pitch,

rotation &bout the FA, it has mode shape _e Jl I. Thus the total pitch

perturbation of the blade is ex?_._ as a series, I

=

-48-
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For the blade pitch _ then, the mean plus the perturbation is

o

q_e _ub_cript "m" on the trim pitch angle will be dropped when the

substitution for the modal expansion iz+made, since that is all that

will be meant by _ then.

I'_onrotating Frame

The equations of motion o+ndthe hub forces and moments are

in the rotating frame yet. To get to the nonrotating frame, we introduce

a coordinate transformation of the ?outlet typel i.e., Introduce the new

degrees of freedom:

@"s = .=l

where _o is the coning mode, _IL _ _1% the tip _th p_ne tilt coordinates,

and _ is the react!onless flap mode -- for the out of plane bending

of the blade. Thens

0.+ z.
where the summ_.tion over n goes from I to (N-I)/2 for N oddl and from I to

The quantities _- '_-L, _I' and _I are degrees of freedom.

i.e. functions of time, Just as the quantities _'_ are. These degrees of

freedom describe the rotor motion am seen in the nonrotati_ frame, while

the _ describe the motion in the rotating frame.

-_-

_.L +
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This coordinate transform must be accompanied by a conversion of
/ %

the equ'_tlon,'_of motion for qtm) from the rotating to the nonroL%ting fr_%ne.

This is acce_I_lished by ol,t_ratinron the equationc of motion _,'%ththe

following s_nation oper rz:

Peference I_C[ves more ,Tetails of this transformation.

Similarly, the degrees of freedom for the blade pitch ar ginbal

motion are '.r,.nsformedto the nonrotating frame. The corresponding degrees

of freedom for the rotating and nonrotating frames are:

rotating nonrotatin 6

f'_ 8o ) ,_ ) I$

When the transformation of the equations and degrees of freedom

is accomplishec_, there is a decoupling of" the inertial and structural

terms am follows (for N _ 3) :

a) 0, lC, iS degrees of freedom, _ ,_,, and _$ ;
and the rotor zhaft motlon.

b) 2C, 2S, ... , nc, ns, N/2 degrees of freedom (as present).

The fizst set couples with the fixed system motion. The latter set is just

internal rotor motion. Vor Y = 3, the first set is the conplete description

of the motion of course. Nonaxial flow aerodynamics couples all the rotor

degrees of freedom and shaft motlonl i.e. %ha two sets above are coupled

for helicopter forward flight or conversion mode operation. For axial f]ow --

hover or proprotor airpl_ne mode cruise operation -- the aerodyrmalc terms

decouple also.

We shall assume here that the rotor has three or more bla_ea, N _ 3.

For h - 2, there are periodic coefflclent_ even in the inertia ter_s, so

] 974023385-05 ]



that is a special case. ?or the case of periodic coefflclent_ In the

aerodynamics, i.e. helicopter forward flight or conversion mode flight,

it is necessary to specify N; we shall take N = _ for that case. (The

periodic coefficients depend on ;,'.)For the case of axial flow, or for

the constant coefficient anproxlmation for the nonaxial flow case, the

equations obtained will be valid for all N greater than or equal to 7.

_eference l_disc_ses these points further.

F.,quat__J.onsof Hotlon/ Hub Forces and Moments

The elements are available now to obtain the equations of motion

for the blade bending an_ torsion modes, in the rotating frame; and the

forces and moments acting on the hub due to the ruthblade. The ._teps

required are:

a) Substitute for the expansion of the bending an_ tor31on

motion as a series In the modes.

b) |Me the appropriate modal equation to introduce the

mode natural fz'_,quencyInto the bendlr_ or torsion

equation, replacing the structural stiffness terms

(and for bending also some of the centrlfuA'al stiffness

ter_s ).

c) 'orthebending uatio., .Ith ("Ja
to obtain the ordinary differential equation for the

kth mode of the ruthblade (the qk equatlon).%

d) For the torsion equation, operate _lth _a _ 6''" >_J"

to obtain the ordinary d$fferenttal equation fo tb_

kth mode of the ruth blade (the Pk equation).

The result is the equations of motion and hub forces in the rotat'.,_

frame. The transformation to the nonrotating frame lnvolvee the following

steps s

-51-
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f
f

a) Operate on the hub force and moment wit_, _- _.-- 5 •J

i.e. sum over all N blades to obtain the total force

and moment on the hub.

b) Find the -_ _ -_ )_ comT_nents of the force

and moment in the nonrot_ting fr%me (the S system).

c) _Jrlte the shaft motlon a--, _. , an_ Loo in tern._

of the "_)_ components in the
nonrotating

= frame (the S system).

d) Apply the Fourier coordinate transform to the equations

of motion and rotor degrees of freedom| operate on the

equations for bending and %or._,ionwith

tO obtain tho nonrotating equations of motion (0, if',

iS, etc.). N _3 is assumed for th_s transformation.

The transforw_tion of the equations to the nonrotattnd_ frame will be delayed

however, so the rotating modal equation_ may be presented first.

We add at this point structural damping terms, modelled as equivalent

viscous damping; the structural damping parameter is gs (which may be different

for each degree of freedom), eq_zl to twice the equivalent damping ratio.

Na_es are given to all the inertial constants now. The equations

of motion, hub forces and moments, and inertia constants are also normalized

at this point. The inertia constants are divided by the characteristic

inertia I b - _ r2a dr, and we lnt_duce the blade Lock number _ - _ acR4/Ib .

This normalization of the inertia constants is denoted by a superscript *.

The rotating equatiora of motion are divided by _1 the hub forces and moments

are dlv_ded by (N/2)Ib for Mx, My, H, and ¥, and by FIb for Q and T. The
result is that the forces and moments are obtained in coefficient form.

More details of this _rualization procedure are given in reference _.

i -52-
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i

_uJtlons

The resulting hub forces, hub moments, glmbel equations, and

eq_tlons of motion for coupled flap/lag,bending and for elastic torsion/

rigid pitch of the rotating blade are as follows.

"- St_,o, ,_,,. + 2 e,s
_. - (:)+_ f._.. (_,. �(_,:',>

z f.a,_,, g _ C s_.. eo

-_;)-
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Aerodynamic forces

and then for the nonrotating eqt,_tions,

-55- '
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except for rigid pitch (k = 0), where
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and :

o
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Nonrotatin 6 frame equations

The equations of mot[o,_ for the rotor in the nonrotat_n6 frame,

i.e. after application of the ;(,t_r_ercoot,][Date transformation, are

and the h,)bforces and nomen%_'_

F = cz,.e ”�X�¨�c.o*eP� �Ä�.,.c,&,.,.c..o_ +P',u_o
,.&

where the rotor 4ee,rees of free_{om ( ×?_ ), shaft notion (_), rotor blade

Ditch. _nput ( v_ ), and the hub forces and moments ( ? _.are:

--' _,?_ _ =

eoc,-_

e_,:, c_

- 1- - ZC.._

"_ = a,_"_" - ¥ -z.C_v

zE..-_

The _atrlces of the c_eff[clen_, and the aerodynamic forcing vec_mr_, follo_.

; -(4-

+
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In thh_ section, tn(, ,tro, iynan_.r ' force._, a_,,' mc.,ment; _, or_ the r;_tor

blade are derive:. We _h:_][ eoun_der the gene_Ll ( _:e of h_f,h or lo;:

_nflow, an_ axial or nonaxlal !low. The %erodyn_mYe terms %n t_( rot_,r

eqt_tton_, of notion and the hub force: _nd moments are obt%ine 4 for

three case:_: _xia] flow (hover or high _nflow cruise); nonax_] flow w_th

periodic coefficients (helicopter forwal'fl flight, or conver_-ion mode

flight), and a constant coeff_(,%ent approx_matlon for norulx[al f]_w.

The nrtnciple ass_mption_- in the aeroc]ynamic analysis are:

reverse flow _s neglected (goo,_ to an advance ratio of about 0./_ or 0.g.

which is s_Jft_cient for the tilting pro:,rr)tor aircraft); the wing _:o_]:e

(neaJz field an_ far fief,!) effect on the rotor, and other w_ng/rotor
|

interferences are neglected; the unsteaJy rotor wake effect,_ are neElecte_;

the virtual m:L_S aerodynamic f_rces an_ momen%_ are neglected; the or@or

c (rotor chord) terms in the aero#yna_Lc llft expression are neglected;
q

the order c_ terms in the aerodynamic moment expression are neglected;

and only first order velocity terms are retained. The derlvatlon an,]

notation are an extension of tb_%t in reference _.

Section Aerod_m,_Ic Forces

A hub piano reference frame is used for the aerodynamic forces.

All forces and velocities are resolved in the hub plane then, 5 .e. in

the B system. The hub plane reference frame is fixed wlth respect to the

shaft, hence it is tilted and displaced by the shaft motion. F_gure I0

illustrates the forces and velocities of the blade section aerodynamics.

The velocity of the air seen by the blade, the pitch angle, and the angle

of attack are:

= blade pitch, measured from the reference plane

UT. UR, Up = air velocity seen by the blade, resolved with
respect to the reference plane; u,r is in the hub

plane, positive in the blade dra_-dlrectlon; t£_
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is in the hub plane, positive radially

outward along the blade; and u_ is normal
to the hub plane, positive _owh through
%he rotor disk.

U = resuliant a_r velocity in the plane of the section.

= Induce_ anzle

C>4 = section angle of atU_ck

where

% % %

The aerodynamic forces anc_ moment on the section, at the EA, are:

L, D = aerodynamic lift and r]ra4_forces on the section, normal

and parnlle] to the resultant velocity 11

F , Fx = section L and D (total aerodynamic force on the section)
resolved w_th rerpect to the hub plane,normal to and in

the pl_ne of the rotor

: _ radial drac force on the blade, in the plane of the 4isk,r

positive ol_t_ard (the same direction as _ositive uq);
the radial forces due to the tilt of _ and F h;_v4 been

z x
considered se_%rately.

! = section aero0_'namic moment about the EA, positive nose up.&

Aerod_m%mlc forces -- wind axes

The sect%on llft and drag are

where U = resultant velocity at %be section

_ = air density
c = chord of blade

The air density is dropped at this point, in the process of makln_ the

quantities dimensionless with _ , _'_ , and R. The section llft
..s

-75-

1974023385-076



/

%nd @r_._.coeff!clents, cI c[ :-_ , ) .-,n,_ cd Cd[ _ , _!) are f,_ncton:

of the section %ngle of attack _nd [_arb number:

where " is the tip _larh nu',_ber, the rotor tip spee_I _:, div] ea by
TIP

the speed of sound. The _epeIWence of cI and cd on other qvant't[es, such

as the local ;%w angle or _n._'te1_y anglr of att.zck charkges, [s neglecte_.

The r._,i]a] force, aue to the radial ,_r<__;<,is

_ = _--_5 = _ t_z_c_
b_ 7_

The ra£ial drag force is 4erlve ,_ asslminc that the viscous 4rag force on the

section has the same sweep angle as the local section velocity. The

moment about the _ is

where xA = distance aerodynamic center (AC) behind EA

c : section [_oment about the AC, positive nose up.
m
ac

M[,_ = unsteady aerodynamic moment.

_or the section aerodynamic moment it is necessary to incluOe the unsteady

aerodynamic terms, which from thin airfoil theory are

where w = mean upwash along the blade chord, i.e. normal blade section

= uTsin@ - upcos@

B = _/_ , basically the pitch rate

V = UTCOS_ + UpS in

-?6-

I

1974023385-077



Hence _n the aerodynamic model we have neglects4 the follow]n# _

effectm: reverse flow; shed w:tke _lerodyn:_mlc interference '_e.6. lift

def_c_,oncy functAon set to unity); term._" _n L order c and atx_ve; term:

In r4order c _nd above; vir't_l ma::s tea-ms in the un._teady :leroJynam}c

moment.

_Aerodsmlmlc force_: -- hub plane :txes

With :',_zpect to the hub p],tne then

Substltut_ng for L and D, an(! dlvidln 6 by ac (where a is the two-dlmenslonal

section lift c_wve slope, and c the sectlon chorS; which enter the Lock

number _" also), we obtain:

The net rotor aerodynamic forces are obtained by Inte_-A-atlon of the section

forces over the span of the blade, an then summation over all N blades.

Perturbation forces

E_ch component of the velocity seen by the blade has a trim ter_.

due to o_eratton of the rotor in its trim equilibrium state: and a perturbation

term due to the perturbed ,,etion of the system. The latter is due to the

system degrees of freedom, and is ass_ed to be small in obtaining the linear

differential equations describing the dynamics. We shall write the blade
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pitch and section velocities as trim plus perturbation terms:

then there follows the pertt_rbations of _ ,U, and M:

and of the aerodynamic coeffients

(and similarly for cm and Cd). The perturbations of the section aerodynamic
forces may then be obtained by carrying out the differential operation on

the expressions above for F . Fx, Fr, and Ma , using the above results

to express the perturbations in terms of Je ,_u T, _up, and _u_.

The coefficients of the perturbation quantities are then evaluate_ at the

trim state. The results are x

i _7o-
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Velocity of the Blade

Now we obtain the velocity of the air seen by the bla#.e section.

There is the tri_ velocity, compoced of the forward speed, rotor rot._tlon,

and rotor ir_uoed velocity! and the _erturbatlon velocities, Cue to the

rotor de,reef of freedom and the shaft motion, an_ _ue to the aero_ynamlc

gust velocity.

The retor is rotatin_ at constant speed -_- . The steady velocity

ot the rotor with re_poct to he air, it described by (figure 11),

V = t_J.m velocity of _he rotor in inertial axes,
in the rotor x-z plane.

_4_,- angle of attack (u_lsturbe_) of the rotor hub plane
with respect to V, positive for disk tilt forward (for
V doom through the disk)! this is the shaft an_le.

• l

i
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There are then the following cases: ewWp - 90° for cruise (high inflow

axial flight); e_p small for helicon_.er forward flight; _p ]arge

but less than 90° for conversion mode; and V - 0 is the hover case.

The rotor induced veloclty is v, due to the thrust T (figure I[); v is

assumed to be normal to the hub plane, and _nlform over the _.Isk, Now the

rotor advance ratio /w and inflow ratio k are _eflneds

_ze

The cases are then: for hover /_ - 0 and _w small: for helicopter forward

flight _ _ 0 and _ small; for conversion mode flight /w _ 0 an_

order I; and for cruise flight _ - 0 and _ order I.

For the rotor induced velocity we use the Glauert result;

For hlgh speed ( V2 _ ACT(3?-]_)2 or about V/3_M R _ 0.15) in
inflow rB,tlo

is approximately _'_

The induced velocity is thus quite s_all, v/V4_ i, for typical I_.)]n_tor

cruise and conversion mode operation. The irMuced velocity is not generally

an important factor In proprotor &erodynamlca at high inflow ; hence the

assumption of uniform induced inflow is acceptable for an investigation of the

p_protor aeroolastic behavior. (See reference ".) The mutual aerodynaaic

lnterferen_-e of the rotors is neglected.

The trta velocity V is steady, at an a_le c_p %o the rotor hub

plane. The untfona induced velocity v is aorta1 to the hub plane. The

advance ratio and inflow ratio,/_ an_ _ , are the nondiseneionsl
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componenL_ parallel and normal to +'.,_hub plane. _n body axes, V would

be fixed in the reference frame, and wo_Id tilt with it, Here an inertial

flame (the S system) is used however, :, it follows that tilt of the rotor

by the shaft notion givez a ._ .II chg.n,<e in the direction of V as seen in

the reference frame.

The zhzft motion consists of sn;_ll linear and angular velocity,

with components defined In the nonro_'tt_rR frame:

The aerodynamic gust velocity has components UG, VG, and wC (longitudinal,

lateral, and vertical) defined with respect to the body or earth axes

(figure II)I these components are the velocity seen by the aircraft, and

are assumed to be small compared to ._R. The gust component8 are

defined with respect to V, i.e. ¢_M_ from the disk plane, so that with

V usually horizontal (level flight) wG and uG arc always the vertical

and longltudinal components wlth respect to the flight path. The gtmt

componenta are normalized by dividing by _7. R, not by V as is often the

convention for airplane analyses. The aerodynamic gust is assumed to be

un2form throughout space.

Trim terms

The r_sult for the trim velocity terms is1
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w'_ere _cA_c. is the input cyclic _itch required to tr_m the roar.

_or the trln velocity, the blade bend1 :_ and gimbal notion 9q petit lie.

iJoraxial fl'_ht, /_ = O, the trim velocities are constant; for non_xJal

flow, _ _ O, these velocities are periodic in _ , due to the rotation

of the bl_e with respect to the rotor forward velocity.

Perturbat ion term_

The result for the perturbations of the velocity conponents and

the blade pitch, due to the rctor and sh_ft motion and the aerodynamic

gust, is thez:
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Ro%or AeroJyn_mlc Forces -- Ro%atlng Blade

With now the expansions for the section forces and monent in terr,s
#

of t_eloclty Imerturbations, and the velocity in terms of the motion

of th@ rotor and shaft, we may cb%_%in the pert_rbations of the aerodynamic

forces on the blade. These are the blade forces expanded as linear combi_tlon::

of the de{_reez of freedon. Giving mnl,es to the aerodym%_ic coefficients<

at this point, the tesults for the required aerodynamic forces on the rotating

blade are as follows.

Bending:
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radial force :

TotsIon/pltch:
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Hub forces and moments: similar to the bending case, but with notation

integrand notat ion

flap moment rF f,_
Z

torque rF QX

blade drag fo:_c_ F H
X

thrust F T
Z

Aerodynamic coefficients

Applying the results for the expansion of the aerodynamlc forces,

and the expansion of the velocities, the aerodynamic coefficients may be

evaluated. These coefficients of the degrees of freedom in the aerodynamic

forces are constant for axial flow, the _A = 0 case. For the general nonaxial

flow case, 2Aa_ O, the coefficients are however periodic functions of _,_

The results follow.

i.
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Flap moment:

m+.-- 5'°+,+,.<'+"a<-"

+,. = s'+_. _;+,m"
Other hub forces and reorient: similar to flap moment, With

coefflcient integr_nd

flap moment V rF
Z

torque Q rF X
J

blade drag force H Fx

thrust [" F
Z

Radial force:

z, g T.._,.,-;,, (.+,--_,.+N"_,,.'++,.,_Y'_1,++- s: [+,, _,.(.,,-+++_.<:,,.-++,.1P>->+,+
%- ,..+,,. +, -,-.,-,+'.a,
m,,,- '_'.T.,',.,- +,:, <:+,-_,,+'&-(',,-+++."P.f'>"J

+ P.+: +'.[F,,-_, (+,-+,+'&.(',.'_+-,._f+"+"_+
+

+ -88-
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Tors ton/pltch:

l

,_. ( I _'_ __=.,_ _r

_0_)_

.... -T-T .................................... \
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t

32. c,

where

and
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Rotor Aerodynamic Forces -- Nonrotating Frame

The aerodynamic forcing functions for the rotor equations of

motion in the nonrotatlng frame, and the hub forces and moments are

now required. These are obtained by summing the blade rotating forces

(given above) over all N b/ades. The _o,_ler coordinate transform of

the rotor degrees of freedom i_ introduced as required.

Axial Flow

First consider the case of axial flow, _ = O; for either

high inflow ratio _ (order I, i.e. proprotor cruise flight), or low

inflow (small _ , i.e. hover in hellcopter mode). In this case the

aerodynamic coefficiemts in the blade forces are constant, independent

of _ . The coefficients are also independent of m (the blade index)

then, so the summation over N blades operates only on the blade degrees

of freedom and shaft motion variables. The result for the required

aerodynamic forces, in matrix forn, is

- _ - A,_.,_+ _,._,t+ A,& + _ - _

where the rotor degrees of freedom ( _ ), shaft motion (_). and

aerodynamic gust input ( _ ) are:

_,i iQw9

CSGL

These coefficients simply add to %_Ieinert_Ll coefficients already derived,

to complete the equations of motion. The matZices of the aerodynamic

coefficients follow.

o
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Nona×ial flow

Consider now the _se of nonaxlal flow, /_ > O. This case

inc!_e6 helicopter mode forward flight, and conversion mode flight for

the kilting proprotor aircraft. The aerod.vnsJIiccoefficients are then

periodic funct[ens of &_ . Hence the equations of motion for the

system have periodic coefficients, due to the periodically va_in 6

aerodynamics of the edgewise moving rotor.

One can express the aerodynamic coefficients as Fourier series,

and then obtain the coefficients of the nonrotating equations of motion

in terms of these harmonics. For the general rotor considered here,

it would be necessary to eval_%te the harmonics of the aerodynamic coefficients

numerically, however. It is simplest therefore to just sum (n_erlcally)

the coefficients over m = I...N as is required in finding the nonrotating

equatioms of motion and the net hub forces and moments. The nonrot_ting

coordinates for the rotor motion (Fourier coordinate transformation) are

also introduced.

For the periodic coefficient case, it is necessary to specify the

number of blades N, since the periodic coefficients depend on N! also,

the periodic coefficients couple all the rotor nonrotating degrees of freedom,

so more than the O, 1C, and iS variables are involved with the shLft

motion (if N _ 3). We shall consider only the case N = 3! then the

O, IC, and iS degrees of freedom are the complete set, even for the

periodic coefficient case. The period of the equations in the nonrotatlng

f_ae _ A_ " 2w/N.

Again we write the aerodynamic forces in matrix form, as
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where now the coefficients A, B, C, and D are periodic functions of

(period 2_/N). The matrices of the aerodynamic coefficients follow.

The notation

C = cos_

S " sin _..

is used (_ = _+_ _> ). Note that each matrix is a summation over

all N blades (_ = 3 in this case).

-103-

1974023385-104



1974023385-105





I J

]974023385--]07



Ao_ _±





!

-109-

1974023385-110



-11o-

1974023385-111



,, ,......................... I .......

!

,,.,, ._. _ ..L

-111-

1974023385-112



"-' l,J

-117.-

'* L, !

1974023385-113



II

' -11_-

+
J

1
:,i+. _u-_ "- Ill ..... "

1974023385-114



....... -- ............. _m.._ . m

T

Constant Coefficient Approximatio n

Finally, we consider a constant coefficient approximation for the

nonaxial flo_+ case. This approximation uses the mean values of the

periodic coefficients of the differential equations. A constant coefflcient

approximation is desirable (if it is demonstrated to be accurate enot_h)

because the c_Iculation required for the analysis is considerably reduced

compared to the periodic coefficient equations, and because the powerful

techniques for analyzing tlme-invarlant (constant coefficient) linear

different_tl eqxmtions are applicable. It is only an approximation to the

correct dynamics however; the accuracy of the approximation must be determined

by comparison with the col_cect periodic coefficient solutions.

To find the mean value of the coefflcleats, we apply the operator

to the periodic coefficients given above. The result is terms of the

form t

+-.,,s+;"(+3
t_S
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where Mnc'ns are the harmonics of a Fot_ler series representationof the

rotating blade aerodynamic coefficient r1:

eo _j
0',_ = r.,° _'%_-_.�_, 1,.. _v..,

l_llt

In the present case, these l_rmonics must be evaluat_nu_erlcally. We

evaluate M at J points, equally spaced around the azimuth,

]_o= _ _._

M..,.s = _ g_ i_i-%

_3"

The harmonics up to the second (n = 2) are required here. This Fourier

interpolationformula requlres then for _ood accuracy about J. 12 (a 30°

azimuth IncrL_ent). Using these expressior_, the required harmonics are,

( i-" I
_ ii,_llilP

\ ._M 1'$

"11_"

3

e

I
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It follows then that the constant coefficient approximation is

obtained from the periodic coefficient expressions by the simple

transformation:

('\
I

\_c, 0 %IM=_ o

The summation over N blades (m = !...N, _ --2W/N) for the perlo_ic

coefficient ca_e is replaced by a summation over the rotor azimuth

(j = i...J, _ = 2_/J) for the constant coefficient approxination.

This is quite convenient, since the same procedure may be used to

evaluate the coefficients for the two cases, with simply a change in

the azimuth increment. The periodic coefficients Rust be evaluated

throughout the period of _ = 0 to 2r/N of cour_e_ while the constant

coefficient approximation ( the mean values only) is evaluated only once.

With the substitution _ _. _ _ , the results

given above for the periodic coefficient matrices are directly applicable

to the constant coefficient approximation as well.
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ROIDR I'RIFI

The are two requirements in the dynamics analysis for the trim,

equilibrium solution for the rotor blac?emotion and rotor performancel

first, the trim bending deflection (_o_+_m_ is required for the

coefficlen_, l_xticularly when the bla,_ torsion dynamic.°,are involved!

secondly, the evahmtlon of the aerodynamic coefflcient_ requires the lift

and dra_ loading of the rotor blade. The trim bending deflection is assumed

to be independent of _ in the analysis, so the mean value must be used

when _ O; for the aerodynamic coefficients, the periodic variation of

the trim blade aerodynamics when 2_ 0 will be included however.

The dynamics analysis (the evallk%tlon of the coefficients of the equations

of motion) must be preceded therefore by a preliminary calculation of the

rotor equilibrium motion. The trim solution for the blade motion is

periodic in the rotating frame for the 6eneral case of nonaxlal flJw!

for _ --O, axial flow, the blade motion is steady in the rotatln_ frame.

For the trim blade motion solution we shall consider o:_ly the bending

and glmbal de6Tees of freedom. It is assumed that there is no shaft motion,

gusts, rotational speed perturbation, or torslon/pitch motion (except

cyclic control and any bending/torsion coupling) in the trim solutlol,.

The trim solution involves the mmerical integration of the

differential equations of motion for a single blade in the rota%ing frame,

until the blade motion converges to the desired periodic solution. The

equations for the bl_ie motion are obtained from the atove analysis, and are

for the bending and glabal de_ees of freedom l

=:(,¢-,',.. • ..w-m" \ "

-If?-
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where the inertia constants are defined above, and the aerodynamic forces

are evaluated using the trim velocity components (for which expressions

are given above).

After the integration of the blade motion converges to a perlodlc

solution, the rotor performance may be eval_ted, i.e. the mean aerodynamic

forces and moments the rotor produces at the hub, particularly the rotor

thrust and torque coefficients. The Fourier harmonics of the blade bending

motion are _i_o evaluated. From the zeroth h_rmonics ol the bending motion,

the mean bendi_ deflection of the blade may be evaluated.

For axtal flow, /t_ = O, inteffratlon of the blade motion is not

required| for the glmbal motion is zero (assuming no cyclic pitch input)

and the eql_t_on for the blade bending modal deflection reduces to

-11_-
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BLA_ BENDING AND TORSION MODGS

Coupled bending modes of a ro_tln_ blade

F_uilibri_ of the elm_tic, inertial, and centrifugal bending moments

on the blade gives the differential equation for the coupled flap/lag

bending of the rotating blade. For free vibration -- the homogeneous

equation (no forcing) with harmonic motion at the natural frequency _ --

we obtain the modal equation for bending of the bladel

where _(-_ = _-_- _-_ = bending deflection (mode shape)

E_ ---8Xt_[t__ --bending stiffness dyadlc

= _T_ I rotor rotational speed

_ natural frequency of mode

This is an eigenvalue problem, a differential equation in r for the

shapes _ and the natural frequencies _ . The equation with
m_e

the appropriate boundary conditions constltutse a proper Stura-Liouville

elgenvalue problem. It follows that the solution exlsts8 a series of modes

ige) a_d corres1_ndlng natural frequencies _| ! where the modes are

orthogonal with weight m, i.e. if l_k then

=o
and the frequencies satisfy the relation (an ener_ balance),

The modal equation will be solved by a C_le_in aet_xl. The mode
_a

shape Is ex_,ade,i as a finite sezlee In the fuaetlom fl(r),
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We require that each of the fl satisfy the _ou_ary cond!tlons on

then the sum automatically does. Since a finite series is required for
.%

computation, this Is an appr_xlmate calculation! the functions fl should

then be chosen so that at least the lower frequency modes can be well

represented, for best n_merlcal accuracy. Substltutlng this serles in

the differential equation and operatin_ with

reduce._,the problem (at'ter inte_ratlon by parts and an application of the

boundary con'It!ons) to a set of algesT_'_c equations for _ = _ci_

where the coefficient matricen are

Eigenv&lues of the matrix _';A _re the natural frequencies _)_ of

the coupled bending vibration of the blade; and the corresponding eigenvectors

c give the mode shape _ . As a final step, the modes are nornalt_ed

to unity_t the t.l.l,,I_l.ce,l = I.

A convenient set of functtonm for fi are the polynomials C_ S_ :

(for • hin_e_ _lsde fl = r is used). These )_l_noalals sat_sf_ the
required boundary ooadltlom, butaze mot oztho_om/ fu_tion_.
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Torsion modes of a nonrotat_ns_bla_e

Equiltbrlun of the el_t_c a_ inertial torsion moments gives

the modal squat!on

The m_es _re ort_o_l w_th wet_ht 16 ; i.e. t_ __ k then

S._ 1:t, =._, =o
an_ the frequencSes _atlcTy the rcl_t_on

These r_re non_tating mo_'ea, c,o the solution is iridescent

of _ or _ . The equation is solvec! by a Calez_.in mete. Writin_

where the funct_o_ fl aatl_Ty the boundary condltlons on _ , an_ onera In_

::Ith _ (,-.__ on the _ifferentlal equation. Imn_duce_a set of

algebraic e_uations for _c = Cct _ :

_'he_e

• -121-
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The ei_envalues of the matrix B-IA 81ve the _atural frequencie_ of the

torsion vibration, and the oorrespondlng eigenvectors for c clve the

modes. Finally, the torslon modes are normalized to unity at the Lip,

A convenient set of functions t_ _me for f[ _s the ._.olutionfor

the torsion mo_en of & unifo_ beam:

r- _a

4. = ,_-Cc.-1 _.- ,_-;,, ]

These functionr satisfy the bo_mdary conditions, and will us,_ullybc

close %0 the actual mode shapes.

-122-

1974023385-123



SUPI_RT _%_I'ATICNSOF MOTIONs CANTIL_K_ WII_G

For the rotor support we consider a cantilever wing, with the rotor

on a _st or pylon attached to the wing tip. Reference 4 dlscuszes the

cantilever wing as a representation of the tilting prolr_tor aircraft

dynamics, and _evelo_ the eq,_%tlorbsof motion describing this support.

The _tlons of motion for the wi_, anc_ the _tor motion _duced by

the wing are develol_ in reference 4; these results are adopted here

with only two exterior: %0 arbitrary angle of attack of the rotor

s_ft with respect to the fo,_ar_ velocity_ a_ the inclusion of a w_nc

traillng-edge flap-_on_ the controls.

Cantilever wl nz

The cantilever wing and pylon ge,,metry is shown in flg,t-e 12.

We consider a high aspect ratio, flexible wing, with the rotor on the

tip. The wing is attached to an 1_vable sup_rt with cantilever root

restraint. A pylon with large mass •ridmoment of Inertia is rigidly •trachea

to the wing tip. The rotor is xounto4 on the pylon with the hub for_ar_

of the wing EA, with mast height h. A general pylon angle _pls considered,

from vertical in helicopter mode to horizontal in airplane mode. The wing

:orion consists of elastic bending, vertical and chordwiee, and elastic

torsion. 1%erl _S no motion of the Pylon relative to the wing tl_, so the

wing tip motion is %re.mitred directly tn %ha hub, an_ hu_ forces and

momenta t_ansaitted directly to the wing tip, thzou_h the _ast of height h.

The rotor and wing operate in • steady free etre_ of velocity V. The

pylon (or east, or rotor shaft) angle of •track _ asy be laxge, so it

covers the entire range of tilting proprotor operation. Th_ cases includes

_p near 90 ° for helicopter aode! _ _et_een 0 and 90 ° for conversion

model _p " 0 for ,_lee hi,de!aim V - 0 is the came of hover flight.

The .ing angle of attack is _ , defined positive nose up!

it is assumed that _& is • small angle. The an_le between the wing and

the rotor shl_t _1 then |p-_4& ! it is this angle which dstemlnes

i
II J I_ I I II I I ,I I 11,,, ,, ,,,,' I_
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the transmission of motion and forces between the rotor rand the wing.

Recall that _p is the ansle of the rotor disk %0 the forward s_ed V|

here we use _p for the shaft angle of attack, hence _# = 90°- _p .

We also consider small sweep angle _.3 (positive aft) and small dihedral

ansle _e (positive up) of the wing. A major effect of _ and _, is

on the position of the effective elastic axis of the wing, hence on the

effective mast height for the transmission of motion and forces between

the rotor and the wing. me angles J,, , _, and _ are removed from

the orientatlcn of the pylon and shaft at the win6 tip. So the rotor shaft

is in a vertical plane with no sweep or dihedral, parallel to V when

_ = Ol an_ then _p is the angle of attack of the shaft with respect

to V, not with respect to the wing.

_,e wing is assumed to have a straight spar llne, which is the locus

of the local _]A. '[hewing root is supported with cantilever restraint, and

the ro_r shaft is attacher_ rigidly to the wing tip. me wing has no twist,

constan_ chord Cw, len_WchYT from _ot to tip (semispan), with the distance

Yw secured from the root, &_ong the wln_ slm_r, me s_k%ftlength (mast height)

is h, the distance the rotor hub is forward of the wln6 tip FA. _e wing

spar is roughly perpendicular to %',with small wing sweep, dihedral, and

angle of attack considered. The wing root is attached to a plane defined

by the forward velocity V and the vertical; then the three rotation angles

_w, , _w L . and 6_ D define the orientation of the spar with respect to

the free stream velocity. Next the pylon is rotated by --_w I , "_a ,

and --_ with respect to the wing tip, to keep the shaft parallel to V_

finally the pylon is rotated by _p with respect to V, defining the

orientation of the rotor.

Swept wi_ are usually built with a center box structure in the

.t_ fuslase, where the sl_re are unswept, and only the wing structure outs__de
tLe fuslage has swept spars. The wing is restrained at several points where

the wlng box is tied %o the fuselage structure, or in this case to the

cantilever wln6 fixed support. There exists an effective elastic axis

for vertical bend.%ng of the wing tip, some point on the shaft or its

-12_--
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extension where the application of a vertical force results in purely vertical

displacement of the shaft, with no rotation in pitch. Without sweep

this point would be just at the wing tip EA; but with sweep a force there

will produce a pitch motion of the shaft also, hence the effective EA is

some distance from the win6 tip FA. The effective elastic axis for the

lies between t_ctual w_ng tip EA and the extension of the u_sweptt_p

spar line, the actual position depending on the degree of root restraint

and sweep, and other s+ructural details. Figure 13 illustrates the

geometr_ involved. Reference 4 develops an elementary model for the

win_. bending and torsion including the shift of the effective EA due to

sweep (and a similar effect due to dihedral), which is adopted here.

_e effective EA position is clescribed by (figure 13):

h = mast height, distance hub forward wing tip EA.

_A = effective mast height, di tance hub for_'ar4
effect}ve FA.

ZFA = distance hub below effective EA due to dihedral.

Further discussion of this effect, includin6 the estimation of the

parametex_ involved, is given in reference 4.

The aircraft has two contrarotatin6 rotors, one on each wing tip.

_e direction of rotation of the rotor on the right Ain_ (as in figure i2)

may be either clockwise or counterclockwise. _1%einfluence of the rotor

rotational direction _s a few sign6 in the equations of motion, reflectlng

how the rotor hub forces and moments excite the wing motion, and how

the wing produces motion of the rotor shaft. As in reference 4, the

notation _ is used to carry this influence of the rotor rotation

direction, where _'L takes only the values _ 1,

I + 1, r_tor z_tatlon clockwise on right

_'_ --__ wing, counterclockwise on left.

- 1, rotor rotation counterclockwise c l

r_ht wl_, clockwise on left.

-12_-
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Wink Motion

The wing motion Iz .!ezcribed by elastic ben_.ir_ and torsion of the

sparl the pylon, and with it the rotor zhaft, is rigidly attached to the

wing, tip. Elastic bending rezult-s in ,'nflection of the wing spar with

conponenL_ both l_rpendlcular to the wing surface (vertical or beam bending),

and paralle] to the wing zurface (chordwlze bending). Verti_] an_ chordwlze

_flned with respect to t.he_irecLion of the local principleben_ i_ _l'e

axes of tee section. There is no win_, twist, _.) these principle axes _re

the same all alon_ the s_n, but they are not vertical and horizontal _xes

beca_=se of the wing sweep, dihec!ral, and angle of attack. We Heflne (f_gure

IP) the wing bending and torsion deflection as follows:

Zw(Yw) : elastic bendi_ vertical displacement of the
:-;_ir,normal to the wing surface, positive up.

Xw(Yw) = elastic bending chor_]wlse d izplacement e:" the
sl_n, in the plane of the wing, T_sitive
rearwar_.

_w(Yw) - p_tch change of local wlng section, due to
elastic tacT,ion about the local F_, Dos_tlve

nose up.

A modal description of the w1I_, elastic defezmlation is used, an_' only

the lowest frequency modes retaine_i. We cormlder .iust tblee degrees of

freedom for the _'ing: fiz-st mode vertic.%l bending, char@wise bending, an<!

tozlslon. '_'hedegTees of freedom reproc,enting the wing notion are:

qw I = wi_ _,vertical or beamwlse bending, positive

upward, qwl : ".yyTw__at the wing tip.
m_

--_'2 wing:chordwlse bending, positive rearwa_ !

% Jy% at tip.
Pw = wing el_tic torsion, positive nose upl

= @w at the wing tlp.Pw

Associated with these de_rees of freedom are mode shapes, _.(b. )
fo-

and 7@(%W_ for bend_. These modes are no_liz_ _ I andtorsion,

to YT z_epectively at the wing tip (Yw " YT )*
w w

-126-
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From the results of reference 4, generalized to arbitrary pylon

angle of attack , _p , the rotor h,fi_ motion due to the wine degrees of

freedom is:

,s I_m_ '-

3w' -_ "+J_'_'_'-_zA5 '=I,-,,

el, -_ \S L,_¢.. -.L&,c. 9-:

•", --3_, -_3 -Lh.S e_ I.

"ks -1 _ +_s

- 1_, _, J.

-.I,_. -,_S

where we have _cltten C for cos( _--_%)

y for YT
w

$, for _l, dll_,

i,l for ,l_lwj
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Wing _.'._qu_tio,zof Motion

From. _'eference z_, the equ-_,tlon _" motion for the qwl, qw 2, _:nC,

degrees (,I"freeaom of the cantilever w_nc;,excited by the forces and'W

moment.n at the rotor hub and by the w_ng aerodyr_mLc forces, are:

/ _9''A''_ /

-128-
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C.12)Ib
I

The wing equatlons are noualized by d_vidlng by so t_otor exciting [

forces are in helicopter coefficient form. The Inertlas aze:

2
•_" -- V-p v)v_

-4"

fI

where mw is the wing mass per unit length; Isw is the wing section moment

of inertia in pitch; mp is the pylon mass (without the rotor); Ip an__ Ip

are the pylon yaw and pitch moments of inertia, without the rotor x about y

the wing tip effective EA; and Zp_ is the distance the pylon CG (without

the rotor) is _.head of the wing _A t_p effective EA. For the px_protor

configuration, the pylon mass is so large that it dominates the wing.

inertias. Hence the inertia is primarily that of the pylon and rotor, with

the wing contributing elastic restraint of the motion. The wing structural

spring constants are Kq_, Kq , and Kp ; these were evaluated by matching
the predicted frequenciSs of 2the wing modes to the values obtained experimentally.

Cql' Cq2' and Cp are the structural damping constants for the wing mo_es.
Vertical bending elevates the rotor trim thrust above the inboard sections,

and so gives a nose down pitch moment _ith effectiveness given by C* iPq
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Dimensionally, the sprh1_ m,_ _nmr_ cons%ants are

k -_kJ t

Hence the relatlve spring and dampln6 r_tes vary with the rotor rotational

speed; i.e. ,e win_ _requency is really a fixed dimensional value (Hz), so

the per-rev values vary with S_- •

Additional discussion and details of the wing equations of motion

_re given in reference 4.

Win[,Aerodxna_ ice

The wing aerodynamic forces exciting bendin_ and torsion notion of

the wing are:

I

where F and F are the vertical and chordwlse aerodynamic forces on
• Zw ,. Xw

the wlnE section (lift and profile pl_ induced drag); _! is the aerodynamicw

moment about the local EA. The velocity seen by the section has perturbations

due to the wln6 degrees of freedom, and due %0 aerodynamic gusts. Aerodyramic

Inf_3rfe£ence between the rotor and %he win6 is neglected. From the velocity

perturbations, the perturbations of the section forces may be found, and hence

the wing aerodynamic coefficients. The derivation of the wing aerodynamic

coefficients follows the standard techniques of strip theory in aeroelasticity8

more details of the derivation are given in reference 4. We also include

here the aerodynamic force due %0 the deflection of a control surfac_ [fl_p

oI-aileron) on the wlng trailing-edge. The geometry is shown in figure 14.

A constant chord (CF) traillng-edge flap, extending from Yw = YFI to Yw =YF O

_ considered. The flap deflection angle is _ , positive downward.,

-130-
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_ is a control variable, in addition to the rotor cyclic anJ colleetlve

pitch controls. The result for the wing aerodynamic forces is:

+ /_,,itq, c_elL c-,,_ze/ 9,,,
LC.+,_, c e,lz r-"e'_ 1 _, e'.,,/

L__._. c.+, c,,. j

L _-.+b

The ae_yna_Lc coefficients _re,

___q,,,, an _,z V Cl._ e,

c._q,, , ,_-, ¢q." + $"a c.q,,
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V_" S c_.. e3

.@

c-l,. = _Z¢_t 2 C..,_._r,
_L_

Jl
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CL and CD _re the aircraft trim lift and drag (profile plus induced)

coefficient! and %e_ and CDew their derivatives with respect to _, .

The section reorientcharacteristics are _iven by xA . the distance the wing

AC is behind the EA, and cm , the nose up moment _oefflcient about the AC.
&c

The constant

_ _ _

accounts for the difference in the nor_alizatlon of the wing and rotor

coefficients. The constants en and fn are InteErals o£ the wing aode shapes,

accountin_ for the way the aotion produces forces on the wings

¢ 3 = "1.,,'t,;, ..a/,_,. =-
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For the flaDeron coefficients, we uses

I--C,JCd

_Calw _,

c-aS _ E_', -- ,oz +..o@

where C. I- I-- _ _c.w

The first factor in these expressions i,', the two-dimensional thin airfoil

theory result for the lift an,_moment due to control surface deflection;

and the Iast two factors are corrections for the wing aspect ratio, thickness,

and real flow effects on the flap effectlvenes, (_$,a _ ,&_. (e_.

_ Equation of Notion

The rotational speed degree of freedom ( _ ) i_ an important

factor in the dynamics, especially with a windaillin_ rotor. Usually

the _$ equation of motion will involve the engine, drive train, interconnect

shaft, and governor dynamics_ here we sball consider only two ILniting cases.

The first case is windmilling or autorotation operation of the

rotor. The rotor is free to turn on the shaft, so no torque moments are

transmitted from the rotor to the shaft, and no pylon roll motion transmitted

to the rotor. Both effecte are accomplished _j using CQ = 0 as the

equation of notion for _S • • There Is no spr_ tara on Ipf , so the

degree of freedom i6 z_mlly _£ , the rotor speed pertt_b_tion. It should

be noted that _$ is defined with reepeot to the _lon, ,htch has a roll

angle _ I so the rotor _pe_ perturbation with respect to space is

thestm _A+_ .

-_-
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The second case considered here is powered operation of the rotor.

It is assumed that the rotor hub rotational speed is fixed, at _'_ ,wtth

no perturbations. This case may be viewed as the l_it of operation with

a perfect governor on engine or rotor speed. The powered case is treated

by dropping the _$ degree of freedom and equation! i.e. the solution

is % - 0.

Hence we add to the support equations of aotion the equation

for _S :
C@ .=0

ir'a

For the powered case this equation and the _# degree of freedom are

dropped from the systea (a row and colunn el_inated from the matrices).

For the windmillin_ case they are retained! note that the _ equation

is first order, since there is no eprin_ tera.

l_eferenceA_gives a further discussion of these two cases,

wiadailling and powered operation, and their effects on the _roprotor

dy_ics.

Sum_rt Equ_tion8 of _otion

Me have obtained now the shaft motion and support equations of

Botion, which in natrix fora are,

_e Q

where _e wink doKro_ of freedom ( _ ) and t_e wlr_ flap control

(%

-13 -
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Vv_ _

_nd as definedabove,the rotorh,,bforcesand moments(_), s_ft

ir'o

--_ ZCv_.

Irz..c,,_
fe

f'a

m

The natrlces of _m ooeffictents of the eqm_m of motion follow.

The mtrtx c t relat_n_ the rotor shaft notion to _w .ing noUon, has
been Stven above.

.-13@-
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Ek_bATIONS tICTION

The complete set of eqtu_tions of motion describing the prol_rotor

and cantilever wir_ system may now be obtained, by substituting for the

shaft motion into the rotor force_ and moments, and then for the rotor forces

into the wing equations. '_he result t._, a set of linear differential

eqtk%tions, of the for_z

where the dec, tees of freedom (ntate) vector ( --%x) and. the input vector

0-

["? = °'+

[++I ..
.%

_ecalliN the equattolw for the rotor equations of motion, the rotor hub

forces and moments, the shaft notion, and the win_ equations of _otinnl

-11,0-
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È�¬�+Co_("l-bG_

_:b2,

the coeffie!or.t m_trice.:-o;' the'ce_F1_, _ equations, of motion m.%y be

i,-'entlfie_,,_:;:
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Treatment of Rotor Pitch/Torslon

The equations of motion have been set up including the rotor pitch

and torsion degrees of freedom, _I_ , and with E)_ (the comnan_e _

pitch angle) as the rotor control variable. One may not wish to include

these degrees of freedom in the system dynamics, but it is not possible to

simply drop them at this stage. The p%tch control and bend_ng/g_mbal

feedback enters the system through the rigid pitch degree of freedom (po) ,

so it is necessary to first operate on the columns of the equation matricez

to account for these effects, rl_nenthe _egrees of freedom and equations
• %

(columns and rows of the matrlces/ may be dropped as appropriate. We shall

consider three options for the treatment of the rotor pitch/torsion motion.

The first option is to include the pitch and torsion degrees of

freedom in the system; then the equations are used as derived.

The ,_econdoption is the case of a rigid control system. It is

the limit of infinite control system and blade torsion stiffness. Thus

the rotor blade elastic torsion motion is zero, and the response of the

rigid pitch motion reduces to

e. = e - -- @

Thusweoperate on the columnsof the A matrix as follows,

subtract KPi times ?,he _o column from the column
_CL)

subtract KPi times the _: column from th, _,.. column_(@1
subtract times the e_ column from the _,_' column

KPi __go%

subtract Kp. times the (_)1¢ column from the _¢ column

subtz_ct KP_G times the _'tJ column from the ,--_-$column

-142-
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and reconstruct the control matrix B as follows l

replace the 6)_" column of B with minus the 6)(_) col_n of Ao

replace the 491_ column of B with minus the go)w.column of ,\o

replace the _,, column of I_with minus the -_is column of Ao

Then the r_gid pitch degrees of freedom and equations of motion are

dropped from the _ystem. Note tN%t the aoove transformation is only the

result of infinite control system stiff nets| It would be possible to retain

the elastic tor(.;ionde_rees of freedon, :;ropping only the rigid pitch Po'

The third option is a q_%sis_%tic approximation for the effect

of the blade torsion ana pitch _lotion. iJeshall neglect the acceleration

and velocity terms in the t_rsion/pitch equations. The torslon/pltch !

equations then become just a _+_%tic Dubstitutlon relation for _ in the

other equation.';of motion. This treatment retains all the static COUDIin_ :,

effects in the A matrix. The required transformation of the equations isO

accomplished as follows. First the Ao, +_,and BG matrices are partitioned,

to separate the _ variables and equations from the rest, Assuming the

e block is in the middle of_x, the state equations take the forml

Now the acceleration and velocity terms are dropped from the pitch equations!

and we write _ still for the state variable vector, but now with the

pitch deo_rees of freedom dropped. Hence

which may be substltutea into the remalnin6 equations, eliminating e from
%

A (the pitch acceleration anc]velocity terms in the remainin6 equations
0

-I_3-
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are dropped). Thus the quasi&tat_c torsion approximation give_ the

following equations of motion, in terms of the reduced state variable
__%

X (without the torslon/pltch _egrees of freedom)l

r _ .a. .ts .Iz_.zz% --I.1.11 1

(Ao) A. _k_ AolAt) Ao /I A- - Ao "'*'c"z'
+ (A.5 A. _, ,,,.,,,,."IX

r-_, .,L,.*,--,z ]|,_-Ao _x. ) s v

= Le-A:"

Aetao )_t._ 11,

-1Lla-
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Figure 1. Proprotor and cantilever wi_ configuration.
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(b) ks

.4k

iB

• _,'_cure q. Notatlon an,_ slgn convention for p;,lmbal mot.ton,
(a) in the nonrot_tlngfz_e, and(b) in the
rotat__ frame.
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Figure I0. Rotor blade section aerodynamics; no'_Rttonand sign
conventions for section forces and velocttles.
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1 i

Ft@ur_ It. Notation __nd _,i_n conventions for rotor velocity" and

, ocLentatLon (_' and _p), induced velocLty (v), and

aerody_m'_c g,_st velocity components (u G, v G, WG).
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